Aktuelle Pressemitteilungen

16 Millionen Euro für Aggressionsforschung

Welche Rolle spielt Aggression bei psychischen Erkrankungen? Dieser Frage widmet sich ein neues Forschungsprogramm, an dem die Universität Würzburg beteiligt ist. Es wird gefördert von der Deutschen Forschungsgemeinschaft (DFG).

Prof. Dr. Katja Bertsch, Psychologieprofessorin an der Universität Würzburg, wird an zwei Projekten am neuen SFB mitarbeiten.
Prof. Dr. Katja Bertsch, Psychologieprofessorin an der Universität Würzburg, wird an zwei Projekten am neuen SFB mitarbeiten. (Hofmann/JMU)

Aggression ist ein Symptom unterschiedlicher psychischer Krankheiten – etwa bei Borderline-Persönlichkeitsstörungen, ADHS, Schizophrenie und bipolaren Störungen. Ein neues Forschungsprogramm, an dem die Julius-Maximilians-Universität Würzburg (JMU) mitarbeitet, will entschlüsseln, welche genetischen und molekularen Mechanismen auf aggressives Verhalten einwirken. Von der DFG wird es mit 16 Millionen Euro als Sonderforschungsbereich gefördert.

„Indem wir herausfinden, welche biologischen und chemischen Prozesse im Körper bei Aggression ablaufen, hoffen wir, aggressives Verhalten künftig besser vorhersagen und effektiver behandeln zu können“, erklärt Katja Bertsch, Inhaberin des Lehrstuhls für Psychologie I: klinische Psychologie und Psychotherapie.

Koordiniert wird der neue Sonderforschungsbereich von der RWTH Aachen (Sprecherin: Ute Habel), die Universitäten Frankfurt und Heidelberg sind ebenfalls beteiligt. Das Würzburger Forschungsteam rund um Psychologin Bertsch wird an zwei Projekten mitarbeiten: in einem sollen Konflikte in Paarbeziehungen im Vordergrund stehen, während es im zweiten Projekt um den Zusammenhalt zwischen Aggression Testosteron und anderen Hormonen geht.

Förderung bis 2028 geplant

Sonderforschungsbereiche (SFB) sind langfristige Forschungsprogramme, die von der Deutschen Forschungsgemeinschaft (DFG) gefördert werden. Ziel ist die Bearbeitung komplexer, interdisziplinärer Forschungsfragen durch die Zusammenarbeit mehrerer Institute oder Fakultäten über einen Zeitraum von bis zu 12 Jahren. Der SFB 379, in dem das Würzburger Team mitarbeitet, trägt den Namen „Neuropsychologische Aggression: Ein transdiagnostischer Ansatz bei psychischen Störungen“ und wird ab Oktober 2024 bis 2028 mit knapp 16 Millionen Euro gefördert.

Kontakt

Prof. Dr. Katja Bertsch, Inhabern des Lehrstuhls für Psychologie I – Klinische Psychologie und Psychotherapie, Tel. +49 931 31-86114, l-psy1@ psychologie.uni-wuerzburg.de

 

einBlick - Das Online-Magazin der Universität Würzburg vom 25.06.2024

Prof. Dr. Katja Bertsch, Psychologieprofessorin an der Universität Würzburg, wird an zwei Projekten am neuen SFB mitarbeiten.
Prof. Dr. Katja Bertsch, Psychologieprofessorin an der Universität Würzburg, wird an zwei Projekten am neuen SFB mitarbeiten. (Hofmann/JMU)

Warum Muskeln schwächer werden und schwinden

Lässt sich neurodegenerativer Muskelschwund bei ALS aufhalten? Verbindung zwischen Motoneuronen und Muskel im Fokus

Dr. Mehri Moradi erhält DFG-Förderung in Höhe von 420.000 Euro für den Aufbau einer Forschungsgruppe, um Synapsendegeneration bei der Amyotrophen Lateralsklerose (ALS) zu untersuchen und einen Therapieansatz zu finden.

 

Mehri Moradi vorm PC
Die Neurobiologin Dr. Mehri Moradi vom Universitätsklinikum Würzburg (UKW) erhält eine DFG-Förderung in Höhe von 420.000 Euro für den Aufbau einer Forschungsgruppe zur Pathogenese der Amyotrophen Lateralsklerose (ALS). © Kirstin Linkamp / UKW
Mehri Moradi schaut ins Mikroskop
Mit dem Forschungsteam am Institut für Klinische Neurobiologie des UKW hat Mehri Moradi bereits herausgefunden, dass vor den motorischen Nervenzellen die neuromuskuläre Synapse abstirbt - die Verbindung zwischen Motoneuron und Muskelzelle, die die Übertragung von Nervenimpulsen ermöglicht, welche die Muskelkontraktion auslösen. © Kirstin Linkamp / UKW
Mikroskopisches Bild von neuromuskulären Synapsen bei Mäusen
Rechts im Bild ist die Synapse zwischen Motoneuron und innerviertem Zielmuskel in Mäusen mit Spinaler Muskelatrophie (SMA) zu sehen, links im Wildtyp. Die Nervenbahnen mit dem präsynaptischen Kompartiment sind gelb dargestellt, das postsynaptische Kompartiment an der Muskelfaser ist magenta. © Mehri Moradi / UKW

Würzburg. Gehen, Stehen, Essen, Atmen - all diese Bewegungen werden vom Gehirn gesteuert. Doch wie landet zum Beispiel der Befehl „Geh!“ aus der Schaltzentrale oben im Gehirn unten in den Füßen? Und warum kommen manche Befehle nicht an oder können nicht umgesetzt werden? Dr. Mehri Moradi vom Institut für Klinische Neurobiologie des Universitätsklinikums Würzburg (UKW) erklärt: "Die Bewegungsimpulse werden über den motorischen Kortex von motorischen Nervenzellen, den oberen Motoneuronen, vom Gehirn durch das Rückenmark geleitet, wo sie auf die unteren Motoneuronen treffen. Diese nehmen den Befehl auf und leiten ihn über ihr Axon, eine lange, dünne Nervenfaser, an die Muskeln der Beine und Füße weiter. An der Verbindungsstelle zwischen Motoneuron und Muskel, der Synapse, wird der elektrische Impuls in einen chemischen Botenstoff umgewandelt. Dieser bindet sich an die Muskelzellen und löst die Kontraktion der Muskeln aus, so dass sich die Beine bewegen.“ Die Motoneuronen sind also wie Telefonleitungen, bei denen es zu Störungen kommen kann, wie zum Beispiel bei den neurodegenerativen Erkrankungen Spinale Muskelatrophie (SMA) und Amyotrophe Lateralsklerose (ALS).


Und genau auf diese Störungen konzentriert sich Dr. Mehri Moradi. Für ihre Forschung zu einem möglichen Pathomechanismus bei ALS und den Aufbau einer eigenen Arbeitsgruppe hat die 42-Jährige jetzt von der Deutschen Forschungsgemeinschaft (DFG) eine Förderung in Höhe von insgesamt 420.000 Euro erhalten. Im Fokus steht eine Mutation im Gen C9orf72, bei der es zu übermäßigen Wiederholungen von DNA-Bausteinen kommt, welche Proteine verändern und toxische Effekte auf Nervenzellen haben.

SMA: Durch Gendefekt stirbt zuerst die neuromuskuläre Synapse ab

Grundlage sind frühere Untersuchungen zu den Pathomechanismen der SMA. SMA ist mit 1:7.000 Neugeborenen in Deutschland eine der häufigsten autosomal-rezessiv vererbten Erkrankungen und eine der häufigsten genetischen Ursachen für frühkindliche Sterblichkeit. Die Erkrankung wird durch Mutationen im SMN1-Gen (Survival Motor Neuron 1) verursacht. Dieses Gen ist für die Produktion des SMN-Proteins verantwortlich, das für das Überleben und die Funktion von Motoneuronen notwendig ist. Ein Defekt im SMN1-Gen führt zu einem Mangel an SMN-Protein und damit zum Absterben der Motoneuronen. „Wir haben herausgefunden, dass vor den Motoneuronen die neuromuskuläre Synapse abstirbt, die Verbindung zwischen Motoneuron und Muskelzelle, die die Übertragung von Nervenimpulsen ermöglicht, welche die Muskelkontraktion auslösen. Die Krankheit beginnt also bei den Nervenbahnen“, erklärt Mehri Moradi.

Bisherige Therapieansätze basieren auf der Wiederherstellung des SMN-Proteins. „Aber diese Behandlungen wirken nicht hundertprozentig, man braucht eine zusätzliche Therapie für die Synapse“, sagt Mehri Moradi. Sie hat auch schon ein Ziel: „Wir haben im Mausmodell bereits gezeigt, dass wir die Synapse retten können, wenn wir bestimmte Proteine wiederherstellen, die bei der synaptischen Übertragung eine Schlüsselrolle spielen, zum Beispiel das Protein Munc13-1.“

Führt die Synapsendegeneration auch bei ALS zum Verlust von Motoneuronen?

Bei der ALS, die zu zunehmender Muskelschwäche und Muskelschwund (Atrophie) führt, ist die Situation ähnlich, aber viel komplexer. Im Gegensatz zur SMA, die durch einen einzigen Gendefekt verursacht wird, sind die Ursachen der ALS noch weitgehend unklar. Bislang wurden 40 Gendefekte identifiziert, die mit ALS in Verbindung gebracht werden. 80 bis 90 Prozent der Fälle treten jedoch sporadisch auf, und es ist möglich, dass eine Kombination aus genetischen und Umweltfaktoren zur Entstehung der Krankheit beiträgt. „Es gibt vier aggressive Gene, von denen das Gen C9orf72 die häufigste Ursache für ALS in Europa ist“, sagt Mehri Moradi. In Europa erkranken jährlich drei von 100.000 Menschen an ALS. Die meisten Betroffenen erleben innerhalb von drei bis fünf Jahren nach der Diagnose eine deutliche Verschlechterung ihrer motorischen Fähigkeiten. Die fortschreitende Schwächung der Atemmuskulatur führt schließlich meist zum Tod. Eine Heilung ist derzeit nicht möglich, aber das Fortschreiten der Symptome kann verlangsamt werden.

Im Hinblick auf weitere mögliche Angriffspunkte für therapeutische Interventionen will Mehri Moradi die Pathogenese der ALS noch besser verstehen, insbesondere wie es zur Degeneration der Synapse kommt. Könnte der Funktionsverlust des C9orf72 Proteins ein möglicher Verursacher der Synapsendegeneration sein? Was passiert, wenn man die Funktion dieses Proteins umgeht oder andere Proteinpartner gentherapeutisch überexprimiert? Antworten sucht sie in Mausmodellen, vor allem aber in menschlichen Stammzellen aus ALS Patienten.

Doktorand oder Doktorandin mit Interesse an Synapsenforschung gesucht 

Die gebürtige Iranerin und Mutter einer Tochter studierte in ihrem Heimatland Genetik und kam 2007 mit ihrem Mann nach Würzburg, um mit einem Stipendium an der Julius-Maximilians-Universität Neurobiologie zu studieren. Dort promovierte sie bei Prof. Dr. Michael Sendtner, dem Direktor des Instituts für Klinische Neurobiologie, und setzte ihre Arbeit als Postdoc fort. Die Neurobiologin freut sich darauf, nun mit Unterstützung der DFG eine eigene Arbeitsgruppe zu leiten. Aufgrund der bevorstehenden Emeritierung von Michael Sendtner wird Mehri Moradi Anfang nächsten Jahres an den Lehrstuhl für Biotechnologie und Biophysik von Prof. Dr. Markus Sauer wechseln, wo sie auch von der dortigen Expertise und Infrastruktur in der Superresolution-Mikroskopie profitieren kann. Jetzt fehlt ihr nur noch ein Doktorand oder eine Doktorandin mit Interesse an der Synapsenforschung. Bewerbungen sind herzlich willkommen. Hier geht es zur Stellenanzeige. 

Text: Kirstin Linkamp / UKW 
 

Mehri Moradi vorm PC
Die Neurobiologin Dr. Mehri Moradi vom Universitätsklinikum Würzburg (UKW) erhält eine DFG-Förderung in Höhe von 420.000 Euro für den Aufbau einer Forschungsgruppe zur Pathogenese der Amyotrophen Lateralsklerose (ALS). © Kirstin Linkamp / UKW
Mehri Moradi schaut ins Mikroskop
Mit dem Forschungsteam am Institut für Klinische Neurobiologie des UKW hat Mehri Moradi bereits herausgefunden, dass vor den motorischen Nervenzellen die neuromuskuläre Synapse abstirbt - die Verbindung zwischen Motoneuron und Muskelzelle, die die Übertragung von Nervenimpulsen ermöglicht, welche die Muskelkontraktion auslösen. © Kirstin Linkamp / UKW
Mikroskopisches Bild von neuromuskulären Synapsen bei Mäusen
Rechts im Bild ist die Synapse zwischen Motoneuron und innerviertem Zielmuskel in Mäusen mit Spinaler Muskelatrophie (SMA) zu sehen, links im Wildtyp. Die Nervenbahnen mit dem präsynaptischen Kompartiment sind gelb dargestellt, das postsynaptische Kompartiment an der Muskelfaser ist magenta. © Mehri Moradi / UKW

Veränderte Thrombozyten unter ECMO erhöhen Sterberisiko - Neue Ansätze zur Blutungsprävention

Universitätsmedizin Würzburg identifiziert GPV-Rezeptor als Ziel gegen Blutungsereignisse bei ECMO

Neue Studie vom UKW zeigt, dass die ECMO-Behandlung zu Veränderungen in Thrombozyten führt, was mit einer erhöhten Blutungsneigung einhergeht. Der GPV-Rezeptor auf den Blutplättchen wurde als mögliches Ziel zur Vermeidung von Blutungen identifiziert.

 

Extrakorporale Membranoxygenierung (ECMO)
Mit einer künstlichen Lunge kann im ARDS/ECMO-Zentrum der Würzburger Anästhesiologie das akute Lungenversagen behandelt werden. Die Extrakorporale Membranoxygenierung (ECMO) basiert auf einer pumpenunterstützten Blutumleitung, bei der über eine Membrane das Kohlendioxid entfernt und gleichzeitig das Blut mit Sauerstoff angereichert wird. © UKW
Die Thrombozyten wurden mittels speziellem, hochauflösenden Mikroskopieverfahren (Konfokale Mikroskopie, Whole-Mount Transmissionselektronenmikroskopie) dargestellt. Die Daten zeigen, dass es unter ECMO-Therapie zu einem Verlust der δ-Granula (dargestellt in cyan in Abbildung A) und δ-Granula (roter Pfeil, Abbildung B) kommt. © AG Schulze / Institut für Experimentelle Biomedizin / UKW

Würzburg. Für Patientinnen und Patienten mit akutem Lungenversagen, kurz ARDS (Acute Respiratory Distress Syndrome), kann die veno-venöse extrakorporale Membranoxygenierung (ECMO) die letzte Therapiemöglichkeit und damit lebensrettend sein. Das intensivmedizinische Verfahren, bei dem zuvor entnommenes Blut mit Sauerstoff angereichert und wieder zurückgeführt wird, ist jedoch mit potenziellen Komplikationen verbunden. Insbesondere Blutungsereignisse schränken den Erfolg der Therapie ein. Auch die Gabe von Antikoagulanzien kann die Bildung von Blutgerinnseln nicht vollständig verhindern, zudem erhöhen Blutverdünner das Blutungsrisiko. Bei diesen Blutungsereignissen spielen die Blutplättchen eine entscheidende Rolle. Die so genannten Thrombozyten können sowohl Blutungen stillen als auch Infarkte auslösen und Entzündungsprozesse in Gang setzen.

In einem interdisziplinären Projekt am Universitätsklinikum Würzburg haben Forschende der Klinik und Poliklinik für Anästhesiologie, Intensivmedizin, Notfallmedizin und Schmerztherapie gemeinsam mit Kolleginnen und Kollegen des Instituts für Experimentelle Biomedizin und der Medizinischen Klinik und Poliklinik I die Thrombozyten im Blut von ARDS-Patientinnen und -Patienten mit und ohne ECMO-Therapie systematisch untersucht. Die Ergebnisse wurden in der weltweit renommierten Thrombose-Fachzeitschrift Journal of Thrombosis and Haemostasis (JTH) veröffentlicht.

Reduzierter GPV-Rezeptor auf Thrombozyten erhöht Sterberisiko 

Dr. Johannes Herrmann, zusammen mit Dr. Lukas Weiß Erstautor der Studie, erläutert die Beobachtungen: „Unter der ECMO-Behandlung stellten wir Veränderungen an den Oberflächenrezeptoren der Thrombozyten fest. Besonders auffällig war eine Reduktion des Glykoprotein-V-Rezeptors. Diese Untereinheit des GPIb/IX/V-Rezeptorkomplexes spielt eine wichtige Rolle bei der Blutgerinnung und wurde bereits in Würzburger Vorarbeiten als möglicher Angriffspunkt zur Verhinderung von Blutungen identifiziert. Und tatsächlich: Eine geringere Anzahl von GPV-Rezeptoren war mit einer geringeren Überlebensrate der Patientinnen und Patienten verbunden“.
Zudem beobachteten die Wissenschaftlerinnen und Wissenschaftler unter der ECMO-Therapie eine verminderte Thrombozytenfunktion und eine Entleerung der zellulären Speicher (δ-Granula) in den Thrombozyten. „Dies führte zu einer gestörten Blutgerinnselbildung und einer verlängerten Blutungszeit, ähnlich wie bei Patientinnen und Patienten mit einem Speicherdefekt, dem sogenannten Storage Pool Defect, bei denen es ebenfalls häufig zu Blutungen kommt“, berichtet Lukas Weiß. Interessanterweise normalisierte sich die Thrombozytenfunktion innerhalb von 48 Stunden nach Ende der ECMO-Behandlung deutlich. 

Mit neuen In-vitro-Modellen präklinische Daten für therapeutische Interventionen gewinnen

„Diese grundlegenden Erkenntnisse über Thrombozyten bei der ECMO-Therapie können in Zukunft dazu beitragen, die Therapie und Behandlung kritisch kranker Patientinnen und Patienten zu verbessern. Indem wir die Ursachen von Blutungsereignissen besser verstehen, können wir nun kausal therapieren“, fasst Prof. Dr. Patrick Meybohm zusammen. Der Direktor der Klinik und Poliklinik für Anästhesiologie, Intensivmedizin, Notfallmedizin und Schmerztherapie ist gemeinsam mit Prof. Dr. Harald Schulze vom Institut für Experimentelle Biomedizin Letztautor der Studie.

In den nächsten Schritten will das Team neue In-vitro-Modelle etablieren, um die Effekte mechanistisch detaillierter zu untersuchen und präklinische Daten für therapeutische Interventionen zu gewinnen.


Förderung: 
Die Studie wurde gefördert von der European Society of Intensive Care Medicine (ESICM) und der Deutschen Forschungsgemeinschaft (DFG) im Rahmen des SFB 1525.

Publikation: 
Johannes Herrmann, Lukas J. Weiss, Bastian Just, Kristina Mott, Maria Drayss, Judith Kleiss, Jonathan Riesner, Quirin Notz, Daniel Röder, Rainer Leyh, Sarah Beck, Dirk Weismann, Bernhard Nieswandt, Christopher Lotz, Patrick Meybohm, Harald Schulze, ECMO aggravates platelet GPV shedding and δ-granule deficiency in COVID-19-associated acute respiratory distress syndrome, Journal of Thrombosis and Haemostasis, 2024, ISSN 1538-7836, https://doi.org/10.1016/j.jtha.2024.05.008.
 

Text: Kirstin Linkamp / UKW

Extrakorporale Membranoxygenierung (ECMO)
Mit einer künstlichen Lunge kann im ARDS/ECMO-Zentrum der Würzburger Anästhesiologie das akute Lungenversagen behandelt werden. Die Extrakorporale Membranoxygenierung (ECMO) basiert auf einer pumpenunterstützten Blutumleitung, bei der über eine Membrane das Kohlendioxid entfernt und gleichzeitig das Blut mit Sauerstoff angereichert wird. © UKW
Die Thrombozyten wurden mittels speziellem, hochauflösenden Mikroskopieverfahren (Konfokale Mikroskopie, Whole-Mount Transmissionselektronenmikroskopie) dargestellt. Die Daten zeigen, dass es unter ECMO-Therapie zu einem Verlust der δ-Granula (dargestellt in cyan in Abbildung A) und δ-Granula (roter Pfeil, Abbildung B) kommt. © AG Schulze / Institut für Experimentelle Biomedizin / UKW

Stress lass nach! Wie ein Trauma entsteht und wieder geht

Neue Erkenntnisse zur Entstehung und Entwicklung stressbedingter Erkrankungen wie Trauma oder Depression eröffnen neue Wege in der Diagnose und individuellen Behandlung

Heike Weber vor dem Massenspektrometer
Privatdozentin Dr. Heike Weber leitet am Zentrum für Psychische Gesundheit das Labor für funktionelle Genomik. Für die PTBS-Studien hat die Biologin am Massenspektrometer die Hochdurchsatz-Genotypisierungen durchgeführt. © Kirstin Linkamp / UKW
Inge Reck pipettiert im Labor von Heike Weber
Die medizinische technische Assistentin Inge Reck (vorn) aus dem Team von Heike Weber (hinten) pipettiert hier eine PCR (Polymerase-Kettenreaktion). Bei der PCR werden kurze genau definierte Genregionen vermehrt. Das PCR-Produkt wird dann in den Massenspektrometer gelegt, auf einen Chip gespottet, mittels Laser ionisiert und in einem elektrischen Feld beschleunigt. Der Genotyp wird über die Masse anhand der Fluggeschwindigkeit bestimmt. © Kirstin Linkamp / UKW

Würzburg. Das Erleben oder Beobachten eines traumatischen Ereignisses wie etwa ein schwerer Unfall, eine Naturkatastrophe, der Verlust eines geliebten Menschen oder Krieg und Gewalt kann der Seele eine große Verletzung zufügen. Die Symptome dieser sogenannten posttraumatischen Belastungsstörung, kurz PTBS, können unmittelbar nach dem traumatischen Ereignis auftreten oder erst Monate oder sogar Jahre später beginnen und das tägliche Leben erheblich beeinträchtigen. Im Lauf ihres Lebens erkranken knapp acht Prozent aller Menschen an einer PTBS, wobei Frauen häufiger betroffen sind als Männer. Es gibt jedoch gute Aussichten auf Heilung. „Je eher eine PTBS professionell psychotherapeutisch behandelt wird, desto größer ist die Wahrscheinlichkeit, den Alltag wieder normal gestalten zu können“, sagt Prof. Dr. Jürgen Deckert, Direktor der Klinik und Poliklinik für Psychiatrie, Psychosomatik und Psychotherapie am Uniklinikum Würzburg (UKW), die einen ihrer Schwerpunkte auf die Erforschung und Behandlung von PTBS gelegt hat. Erst kürzlich war Jürgen Deckert mit seinem Team an der Veröffentlichung neuer Erkenntnisse beteiligt, die das Verständnis der biologischen Grundlagen von PTBS verbessern und neue Wege für zukünftige Forschungsprojekte und neue Behandlungsmöglichkeiten eröffnen. 

95 genetische Bereiche entdeckt, die mit PTBS in Verbindung stehen 

In einer im Journal Nature Genetics veröffentlichten Studie analysierte das Psychiatric Genomic Konsortium, zu dem auch Mitglieder des Würzburger Zentrums für Psychische Gesundheit (ZEP) und ihre Kooperationspartner aus dem ehemaligen Jugoslawien gehören, die genetischen Merkmale von PTBS. „Veranlagungsfaktoren können die Menschen resilienter oder vulnerabler gegenüber Extremerfahrungen machen“, erläutert Jürgen Deckert. „Nicht alle entwickeln nach einem traumatischen Ereignis eine Posttraumatische Belastungsstörung.“ 

Insgesamt wurden die Daten von mehr als 1,2 Millionen Menschen unterschiedlicher Herkunft analysiert. Von den 95 entdeckten genetischen Bereichen, die mit PTBS in Verbindung stehen, waren 80 zuvor unbekannt. „Bei der genaueren Untersuchung dieser genetischen Bereiche haben wir 43 Gene identifiziert die das Risiko erhöhen, nach einem Trauma eine Posttraumatische Belastungsstörung zu entwickeln“, berichtet Privatdozentin Dr. Heike Weber. Die Biologin leitet am ZEP das Labor für funktionelle Genomik und hatte in einer früheren, im Journal of Neural Transmission veröffentlichten Studie in einer Kohorte aus Kriegsgebieten in Südosteuropa (SEE-PTBS-Kohorte) den relativen Beitrag genetischer Faktoren im Vergleich zur Schwere des Trauma und Bewältigungsstrategien untersucht. Heike Weber zufolge sind diese 43 neu identifizierten Gene hauptsächlich für die Regulation von Nervenzellen und Synapsen, die Entwicklung des Gehirns, die Struktur und Funktion von Synapsen sowie für hormonelle und immunologische Prozesse zuständig. Weitere wichtige Gene beeinflussen Stress- und Angst- und Bedrohungsprozesse, von denen man annimmt, dass sie der Neurobiologie der PTBS zugrunde liegen.

Systembiologische Untersuchung von PTBS und Depression in verschiedenen Gehirnregionen, Zelltypen und Blut

Eine weitere Studie, die auf dem Vorläufermanuskript der Nature Genetics-Publikation aufbaut und an der das UKW beteiligt ist, wurde jetzt im renommierten Fachjournal Science veröffentlicht. Konkret ging es hier um die molekularen Ursachen sowohl von PTBS als auch von Depressionen. Beide stressbedingten Störungen entstehen durch das Zusammenspiel von genetischer Anfälligkeit und Stressbelastung, welche nach und nach zu Veränderungen im menschlichen Genom führen, die die Expression von Genen und Proteinen beeinflussen. Um eine integrierte Systemperspektive von PTBS und Depression zu erlangen, hat das internationale Team die Daten aus Untersuchungen von verschiedenen Gehirnregionen mit Analysen der Einzelkern-RNA-Sequenzierung, der Genetik und der Proteomik des Blutplasmas ergänzt. Die Forschenden fanden die meisten Krankheitssignale im medialen präfrontalen Kortex (mPFC). Diese betreffen das Immunsystem, die Regulierung von Nervenzellen und von Stresshormonen betreffen.
Fazit: Die Ergebnisse zeigen gemeinsame und unterschiedliche molekulare Störungen im Gehirn bei PTBS und Depression, sie klären die Beteiligung spezifischer Zelltypen auf, ebnen den Weg für die Entwicklung blutbasierter Biomarker und unterscheiden zwischen Risiko- und Krankheitsprozessen. Das heißt: Die Erkenntnisse weisen auf stressbedingte Signalwege hin und liefern Hinweise auf neue therapeutische Ansätze in Ergänzung der bisherigen psychotherapeutischen Interventionen.

Publikationen: 
Nikolaos P. Daskalakis et al. Systems biology dissection of PTSD and MDD across brain regions, cell types, and blood.Science384,eadh3707(2024). DOI: 10.1126/science.adh3707

Nievergelt, C.M., Maihofer, A.X., Atkinson, E.G. et al. Genome-wide association analyses identify 95 risk loci and provide insights into the neurobiology of post-traumatic stress disorder. Nat Genet 56, 792–808 (2024). https://doi.org/10.1038/s41588-024-01707-9

Weber, H., Maihofer, A.X., Jaksic, N. et al. Association of polygenic risk scores, traumatic life events and coping strategies with war-related PTSD diagnosis and symptom severity in the South Eastern Europe (SEE)-PTSD cohort. J Neural Transm 129, 661–674 (2022). https://doi.org/10.1007/s00702-021-02446-5

Text: Kirstin Linkamp / UKW

Heike Weber vor dem Massenspektrometer
Privatdozentin Dr. Heike Weber leitet am Zentrum für Psychische Gesundheit das Labor für funktionelle Genomik. Für die PTBS-Studien hat die Biologin am Massenspektrometer die Hochdurchsatz-Genotypisierungen durchgeführt. © Kirstin Linkamp / UKW
Inge Reck pipettiert im Labor von Heike Weber
Die medizinische technische Assistentin Inge Reck (vorn) aus dem Team von Heike Weber (hinten) pipettiert hier eine PCR (Polymerase-Kettenreaktion). Bei der PCR werden kurze genau definierte Genregionen vermehrt. Das PCR-Produkt wird dann in den Massenspektrometer gelegt, auf einen Chip gespottet, mittels Laser ionisiert und in einem elektrischen Feld beschleunigt. Der Genotyp wird über die Masse anhand der Fluggeschwindigkeit bestimmt. © Kirstin Linkamp / UKW

Vitamin B6: Neuer Wirkstoff verzögert den Abbau

Ein niedriger Vitamin-B6-Spiegel wirkt sich negativ auf die Gehirnleistung aus. Jetzt hat ein Forschungsteam der Würzburger Universitätsmedizin einen Weg gefunden, den Abbau des Vitamins zu verzögern.

Der Inhibitor 7,8-Dihydroxyflavon (violett) gebunden an Pyridoxal-Phosphatase (grün).
Der Inhibitor 7,8-Dihydroxyflavon (violett) gebunden an Pyridoxal-Phosphatase (grün). (Bild: Marian Brenner / JMU)

Vitamin B6 ist wichtig für den Stoffwechsel im Gehirn. Dementsprechend ist ein niedriger Vitamin-B6-Spiegel bei verschiedenen psychischen Erkrankungen mit zahlreichen Störungen assoziiert – beispielsweise mit einer Beeinträchtigung des Gedächtnisses und des Lernvermögens, aber auch mit depressiven Verstimmungen bis hin zu einer echten Depression. Bei älteren Menschen sind niedrige Vitamin B6-Spiegel mit Gedächtnisverlust und Demenz verbunden.

Obwohl diese Beobachtungen zum Teil bereits vor Jahrzehnten gemacht wurden, ist die genaue Rolle von Vitamin B6 bei psychischen Erkrankungen noch weitgehend unklar. Klar ist jedoch: Eine verstärkte Aufnahme von Vitamin B6 allein, beispielsweise in Form von Nahrungsergänzungsmitteln, scheint nicht auszureichen, um Störungen der Gehirnfunktion zu verhindern oder zu behandeln.

Publikation in eLife

Ein Forschungsteam der Würzburger Universitätsmedizin hat jetzt einen anderen Weg entdeckt, über den der Vitamin-B6-Spiegel in Zellen effektiver erhöht werden kann: nämlich über die gezielte Hemmung seines intrazellulären Abbaus. Verantwortlich dafür ist Antje Gohla, Professorin für Biochemische Pharmakologie am Lehrstuhl für Pharmakologie und Toxikologie der Julius-Maximilians-Universität Würzburg (JMU).

Weitere Beteiligte kommen vom Rudolf-Virchow-Zentrum für integratives und translationales Bioimaging der JMU, dem Leibniz-Forschungsinstitut für Molekulare Pharmakologie-FMP Berlin und vom Institut für Klinische Neurobiologie des Würzburger Universitätsklinikums. In der Fachzeitschrift eLife hat das Team jetzt die Ergebnisse seiner Untersuchungen veröffentlicht.

Enzymblockade verbessert Lernvermögen

„Wir konnten bereits in früheren Arbeiten zeigen, dass das gentechnische Ausschalten des Vitamin-B6-abbauenden Enzyms Pyridoxal-Phosphatase in der Maus das räumliche Lern- und Erinnerungsvermögen der Tiere verbessert“, erklärt Antje Gohla. Um zu untersuchen, ob derartige Effekte auch durch pharmakologische Wirkstoffe erzielt werden können, haben die Wissenschaftlerinnen und Wissenschaftler nun nach Substanzen gesucht, die Pyridoxal-Phosphatase binden und hemmen.

Mit Erfolg: „Wir haben in unseren Experimenten einen Naturstoff identifiziert, der die Phosphatase hemmen und damit den Abbau von Vitamin B6 verlangsamen kann“, erklärt die Pharmakologin. Tatsächlich konnte die Arbeitsgruppe damit die Vitamin-B6-Spiegel in Nervenzellen erhöhen, die an Lern- und Gedächtnisprozessen beteiligt sind. Der Name dieses Naturstoffes: 7,8-Dihydroxyflavon.

Neuer Ansatz für eine medikamentöse Therapie

7,8-Dihydroxyflavon wurde schon in zahlreichen anderen wissenschaftlichen Arbeiten als ein Molekül beschrieben, das Lern- und Merkprozesse in Krankheitsmodellen für psychische Störungen verbessern kann. Mit dem neuen Wissen um seine Wirkung als Hemmstoff der Pyridoxal-Phosphatase eröffnen sich nun neue Erklärungsansätze für die Wirksamkeit dieser Substanz. Dies könnte das mechanistische Verständnis psychischer Störungen verbessern und einen neuen medikamentösen Ansatz für die Behandlung von Erkrankungen des Gehirns darstellen, schreiben die Wissenschaftlerinnen und Wissenschaftler in ihrer Studie.

Dass es überhaupt erstmals gelungen ist, mit 7,8-Dihydroxyflavon einen Inhibitor der Pyridoxal-Phosphatase zu identifizieren, wertet das Team darüber hinaus als großen Erfolg – schließlich gelte diese Klasse von Enzymen als ganz besonders herausfordernd für die Wirkstoffentwicklung.

Ein weiter Weg bis zum Medikament

Wann werden Menschen von dieser Entdeckung profitieren? „Das lässt sich jetzt noch nicht sagen“, erklärt Marian Brenner, ein Erstautor der Studie. Allerdings spreche viel dafür, dass es vorteilhaft sein könnte, Vitamin B6 bei verschiedenen psychischen Störungen und neurodegenerativen Erkrankungen in Kombination mit Hemmstoffen der Pyridoxal-Phosphatase einzusetzen.

Dafür wollen Gohla und ihr Team nun in einem nächsten Schritt verbesserte Substanzen entwickeln, die dieses Enzym präzise und hochwirksam inhibieren.  Mit solchen Hemmstoffen könne dann gezielt getestet werden, ob die Erhöhung zellulärer Vitamin-B6-Spiegel bei psychischen oder neurodegenerativen Erkrankungen hilfreich ist.

Publikation

7,8-Dihydroxyflavone is a direct inhibitor of human and murine pyridoxal phosphatase. Marian Brenner, Christoph Zink, Linda Witzinger, Angelika Keller, Kerstin Hadamek, Sebastian Bothe, Martin Neuenschwander, Carmen Villmann, Jens Peter von Kries, Hermann Schindelin, Elisabeth Jeanclos, and Antje Gohla. eLife, https://doi.org/10.7554/eLife.93094.3 

Kontakt

Prof. Dr. Antje Gohla, Lehrstuhl für Pharmakologie und Toxikologie, T: +49 931 31-80099, antje.gohla@ uni-wuerzburg.de

 

Pressemitteilung der Universität Würzburg vom 13.06.2024

Der Inhibitor 7,8-Dihydroxyflavon (violett) gebunden an Pyridoxal-Phosphatase (grün).
Der Inhibitor 7,8-Dihydroxyflavon (violett) gebunden an Pyridoxal-Phosphatase (grün). (Bild: Marian Brenner / JMU)

Gen- und zellbasierte Therapie: Aufstrebender Hoffnungsträger der Medizin und Wirtschaftsfaktor

Übergabe der Nationalen Strategie für gen- und zellbasierte Therapien an Bundesministerin für Bildung und Forschung Bettina Stark-Watzinger am 12. Juni in Berlin

Akteure aus Wissenschaft, Wirtschaft, Politik und Gesellschaft sowie Behörden, Stiftungen und Patientenorganisationen entwickelten gemeinsam ein Strategiepapier, um die Translation neuer Erkenntnisse aus der Forschung in die Krankenversorgung zu verbessern. Prof. Dr. Michael Hudecek, Leiter des Lehrstuhls für Zelluläre Immuntherapie am Universitätsklinikum Würzburg (UKW), vertrat das Handlungsfeld „Forschung und Entwicklung“ bei der Podiumsdiskussion im Rahmen der Veröffentlichung des Strategiepapiers im Berliner Futurium.

 

Michael Hudecek spricht auf dem Podium
Am Mikrofon: Prof. Dr. Michael Hudecek, Leiter des Lehrstuhls für Zelluläre Immuntherapie am UKW und Sprecher der Arbeitsgruppe „Forschung und Entwicklung“, erläutert bei der Podiumsdiskussion im Rahmen der Veröffentlichung des Strategiepapiers im Berliner Futurium, welche Maßnahmen notwendig sind, um die Nationale Strategie für gen- und zellbasierte Therapien erfolgreich umzusetzen. Foto: Svea Pietschmann
Gruppenbild im Futurium nach der Übergabe der Nationalen Strategie GCT
Gruppenbild mit Bettina Stark-Watzinger, Bundesministerin für Bildung und Forschung, nachdem sie von Prof. Dr. Christopher Baum, Sprecher der Nationalen Strategie GCT und Vorsitzender des BIH-Direktoriums, die Nationale Strategie für gen- und zellbasierte Therapien empfangen hat. Mit im Bild die Teilnehmenden der Podiumsdiskussion, ganz rechts Prof. Dr. Michael Hudecek, Sprecher der AG "Forschung und Entwicklung". Foto: Svea Pietschmann
Szene im Labor von Michael Hudecek
Eine Empfehlung im Strategiepapier ist die Vernetzung und die Bildung von dezentralen Hubs in ganz Deutschland: Die Kernkompetenzen in der Entwicklung und Herstellung von GCT an den verschiedenen Standorten soll weiter ausgebaut und etabliert und die Infrastruktur mit allen anderen Akteuren geteilt werden. © Daniel Peter / UKW

Würzburg/Berlin. Gen- und zellbasierte Therapien (GCT) stehen im Mittelpunkt der zukünftigen biomedizinischen Forschung und klinischen Versorgung. Sie sind aber nicht nur medizinisch relevant, sondern auch gesellschaftspolitisch wichtig und eines Tages möglicherweise ein ebenso großer Wirtschaftsfaktor wie die Automobil- und Elektroindustrie. Um die Wettbewerbsfähigkeit des Forschungs- und Innovationsstandortes Deutschland langfristig zu sichern und den Zugang zu diesen neuartigen Therapien für Patientinnen und Patienten zu gewährleisten, wurde im Rahmen der Nationalen Strategie für gen- und zellbasierte Therapien im Auftrag des Bundesministeriums für Bildung und Forschung (BMBF) und koordiniert durch das Berlin Institute of Health (BIH) eine Multi-Stakeholder-Strategie entwickelt. Die Strategie soll die Grundlage für einen zeitnahen Dialog mit politischen Entscheidungsträgern bilden.

Mit Optimismus und großen Erwartungen nach Berlin gefahren

Übergeordnetes Ziel der Nationalen Strategie GCT ist es, innovative Produkte und Anwendungen zu entwickeln, die ursächlich wirken, die Gesundheit fördern und dabei sicher, effizient, finanzierbar und breit verfügbar sind. Nach der offiziellen Übergabe des Strategiepapiers an die Bundesministerin für Bildung und Forschung, Bettina Stark-Watzinger, erläuterten die Vertreterinnen und Vertreter der acht am Papier beteiligten Arbeitsgruppen, welche Maßnahmen notwendig sind, um die Strategie erfolgreich umzusetzen. Prof. Dr. Michael Hudecek, Leiter des Lehrstuhls für Zelluläre Immuntherapie am UKW und der Außenstelle des Fraunhofer-Instituts für Zelltherapie und Immunologie IZI in Würzburg, vertrat dabei die wichtige Arbeitsgruppe „Forschung und Entwicklung“, laut Hudecek den Motor der GCT. Die 28-köpfige Arbeitsgruppe hat innerhalb eines Jahres konkrete Handlungsempfehlungen erarbeitet. 

Michael Hudecek, Sprecher der Arbeitsgruppe „Forschung und Entwicklung“: „Wir sind heute mit Optimismus und großen Erwartungen nach Berlin gefahren, um Maßnahmen vorzustellen und wichtige Impulse zu geben, damit Deutschland in der Entwicklung gen- und zellbasierter Therapien weiterhin international wettbewerbsfähig ist.“

Dezentrale Knotenpunkte mit verschiedenen Kernkompetenzen 

Ein wesentlicher Punkt der Handlungsempfehlungen ist die Vernetzung und die Bildung von Knotenpunkten, so genannten Hubs. An vielen Standorten in Deutschland gibt es exzellente Forschung und Entwicklung, aber auch viele Redundanzen. „Um die Kernkompetenzen in der Entwicklung und Herstellung von GCT an den verschiedenen Standorten weiter auszubauen und zu etablieren, müssen wir dezentrale Hubs schaffen, deren Infrastruktur mit allen anderen Akteuren geteilt wird“, postuliert Michael Hudecek. Und diese Infrastruktur muss ausgebaut werden, sei es für die Herstellung von Vektoren oder GMP-konformen Materialien, Biotech-Inkubatoren oder Spin-offs. „Der Bedarf an gen- und zellbasierten Therapien wird steigen“, so Hudecek. „Um hier weder zeitlich noch finanziell von Herstellern im Ausland abhängig zu sein, müssen wir unsere Kapazitäten in Deutschland ausbauen.“ Auch in die Ausbildung des Personals müsse mehr investiert werden, sowohl in der Produktion als auch in der Anwendung. 

Agilere Förderrahmen und Patientenbeteiligung 

Das Potenzial in Deutschland werde oft nicht erkannt und die Vergabe von Fördermitteln sei zu langsam, um mit den rasanten Entwicklungen Schritt zu halten. Hudecek fordert mehr Mut zum Risiko, damit das Wissen und die Wertschöpfungskette in Deutschland bleiben. 
Eine agilere Förderung ist eine öffentliche Investition, von der die gesamte Gesellschaft profitiert, vor allem aber die Patientinnen und Patienten. Diese sollten auch stärker in die Forschung und Entwicklung dieser Zukunftsmedizin einbezogen werden. Neben Vertreterinnen und Vertretern aus Wissenschaft, Klinik, Biotech- und Pharmaindustrie waren deshalb auch Juliane Friedrichs vom Haus der Krebs-Selbsthilfe - Bundesverband e.V. und Markus Wartenberg, Patientenvertreter in der Deutschen Sarkom-Stiftung und Sprecher des Patientenforschungsrates Nationales Centrum für Tumorerkrankungen (NCT), in der Arbeitsgruppe "Forschung und Entwicklung" aktiv. 

Würzburger Beteiligungen am 130 Seiten starken Strategiepapier gab es in drei weiteren Arbeitsgruppen: Michael Hudecek engagierte sich neben seiner Sprecherfunktion in der Arbeitsgruppe „Forschung und Entwicklung“ auch beim Thema „Technologietransfer“. Prof. Dr. Matthias Eyrich, Leiter der Bereiche Zelltherapie, GMP-Labor und Hämatologisches Labor im Kinderonkologischen Zentrum des UKW, engagierte sich in der Arbeitsgruppe „Qualitäts- und Kapazitätsentwicklung im Bereich der GMP-Herstellung“ und Prof. Dr. Hermann Einsele, Direktor der Medizinischen Klinik und Poliklinik II, verstärkte die Arbeitsgruppe „Marktzulassung und Anwendung in der Versorgung“.

Matthias Eyrich, Mitglied der Arbeitsgruppe "Qualitäts- und Kapazitätsentwicklung im Bereich der GMP-Herstellung": „Es ist bemerkenswert, dass 140 Wissenschaftlerinnen und Wissenschaftlern in nur neun Monaten ein solches Strategiepapier erstellen und konsentieren konnten. Das zeigt, dass in Deutschland der große Wunsch vorhanden ist, die Gen- und Zelltherapie international kompetitiv aufzustellen. Ich bin zuversichtlich, dass die Politik mit diesen detaillierten Angaben nun leistungsfähige Rahmenbedingungen schaffen wird, mit denen wir diese innovativen Produkte unseren Patientinnen und Patienten schneller und besser zur Verfügung stellen können."

Weitere Informationen in der Pressemitteilung des Berlin Institute of Health in der Charité (BIH).

Zum Download des Strategiepapiers.

Text: Kirstin Linkamp / UKW 

Michael Hudecek spricht auf dem Podium
Am Mikrofon: Prof. Dr. Michael Hudecek, Leiter des Lehrstuhls für Zelluläre Immuntherapie am UKW und Sprecher der Arbeitsgruppe „Forschung und Entwicklung“, erläutert bei der Podiumsdiskussion im Rahmen der Veröffentlichung des Strategiepapiers im Berliner Futurium, welche Maßnahmen notwendig sind, um die Nationale Strategie für gen- und zellbasierte Therapien erfolgreich umzusetzen. Foto: Svea Pietschmann
Gruppenbild im Futurium nach der Übergabe der Nationalen Strategie GCT
Gruppenbild mit Bettina Stark-Watzinger, Bundesministerin für Bildung und Forschung, nachdem sie von Prof. Dr. Christopher Baum, Sprecher der Nationalen Strategie GCT und Vorsitzender des BIH-Direktoriums, die Nationale Strategie für gen- und zellbasierte Therapien empfangen hat. Mit im Bild die Teilnehmenden der Podiumsdiskussion, ganz rechts Prof. Dr. Michael Hudecek, Sprecher der AG "Forschung und Entwicklung". Foto: Svea Pietschmann
Szene im Labor von Michael Hudecek
Eine Empfehlung im Strategiepapier ist die Vernetzung und die Bildung von dezentralen Hubs in ganz Deutschland: Die Kernkompetenzen in der Entwicklung und Herstellung von GCT an den verschiedenen Standorten soll weiter ausgebaut und etabliert und die Infrastruktur mit allen anderen Akteuren geteilt werden. © Daniel Peter / UKW

G-BA-Innovationsfonds-Projekt BRIDGE steht in den Startlöchern

Ein neues interdisziplinäres Forschungsprojekt unter der gemeinsamen Leitung der Universitätsmedizin Mainz und der MSB Medical School Berlin und mit Beteiligung der Universitätsmedizin Würzburg untersucht die Wirksamkeit einer innovativen Versorgungsform für multimorbide, ältere Menschen mit Depression: BRIDGE ist ein Aktivierungsprogramm, das unmittelbar an einen Krankenhausaufenthalt in der Geriatrie oder Gerontopsychiatrie anschließt. Es soll zu mehr körperlicher Aktivität und positiven Erlebnissen im Alltag der Patientinnen und Patienten beitragen und so die depressiven Symptome reduzieren und die Lebensqualität verbessern. Das Projekt startet am 1. Juli 2024 und wird über einen Zeitraum von 39 Monaten mit insgesamt rund 5,3 Millionen Euro durch den Innovationsfonds des Gemeinsamen Bundesausschusses (G-BA) gefördert.

Etwa jeder fünfte ältere Mensch ist von einer depressiven Erkrankung betroffen. Bei älteren Menschen, die zu Hause leben und bei denen zusätzlich körperliche Mehrfacherkrankungen bestehen, ist das Depressionsrisiko noch weiter erhöht. Diese besonders vulnerablen Personen benötigen beim Übergang von einer gerontopsychiatrischen oder geriatrischen stationären Behandlung in die ambulante Versorgung Unterstützungsangebote, um die bereits erzielten Therapieerfolge zu festigen und eine erneute gesundheitliche Verschlechterung zu vermeiden. Bisher fehlen jedoch in vielen Fällen diese speziellen Versorgungsangebote. Hier setzt das vom G-BA geförderte Innovationsfonds-Projekt „BRIDGE – Behaviorale und körperliche Aktivierung für multimorbide, ältere Patientinnen und Patienten mit depressiven Symptomen beim stationär-ambulanten Übergang“ an. 

BRIDGE soll zu mehr körperlicher Aktivität und positiven Erlebnissen im Alltag beitragen 

„Im Erfolgsfall steht mit BRIDGE erstmals eine Versorgungsform zur Verfügung, die eine stationäre mit einer ambulanten Behandlung älterer depressiver Patientinnen und Patienten mit körperlichen Mehrfacherkrankungen verbindet und dazu beiträgt, Krankheitssymptome zu reduzieren, stationäre Behandlungstage zu verringern und die Funktionsfähigkeit und Lebensqualität der Betroffenen zu erhöhen“, betont die Projektleiterin Prof. Dr. Alexandra Wuttke, die neben ihrer Professur für die Prävention von Demenz und Demenzfolgeerkrankungen am Universitätsklinikum Würzburg (UKW) gemeinsam mit der stellvertretenden Projektleiterin, Dr. Katharina Geschke, die Zentrale Forschungseinheit für psychische Gesundheit im Alter (ZpGA) der Klinik für Psychiatrie und Psychotherapie der Universitätsmedizin Mainz leitet. Im Mainz ist die Konsortialführung des Forschungsprojekts angesiedelt. 
Im Rahmen des Versorgungsangebots BRIDGE werden Patientinnen und Patienten zu körperlicher Aktivität und einer positiven Alltagsroutine ermutigt und befähigt. Sie lernen, körperliche Bewegung in ihre täglichen Abläufe zu integrieren und für mehr angenehme Erlebnisse im Lebensalltag zu sorgen. Diese sollen ein Gegengewicht zu teils unveränderlichen Belastungen bilden. „Das Grundprinzip lautet: Nicht darauf warten, bis es besser wird; sondern den Alltag aktiv in die Hand nehmen, selbst wenn die Lust und Motivation zunächst fehlt. Dadurch wird der Teufelskreis zwischen Inaktivität und Depressivität unterbrochen – Stimmung und Lebensqualität verbessern sich“, erläutert die Berliner Projektleiterin Prof. Dr. Eva-Marie Kessler. Die Professorin für Gerontopsychologie an der MSB Medical School Berlin entwickelt das Programm inhaltlich gemeinsam mit Prof. Dr. Lisa Warner (MSB Medical School Berlin) und der Sportwissenschaftlerin Prof. Dr. Claudia Voelcker-Rehage (Westfälische Wilhelms-Universität Münster).

Das Aktivierungsprogramm wird bereits im Rahmen des Klinikaufenthaltes angebahnt und dann nahtlos bei den Patientinnen und Patienten zu Hause durch speziell geschulte Pflegefachkräfte weitergeführt. Diese arbeiten in sogenannten BRIDGE-Teams mit Psychotherapeutinnen und -therapeuten und Bewegungswissenschaftlerinnen und –wissenschaftlern zusammen. Zusätzlich wird das neuartige Versorgungsangebot auch videobasiert im häuslichen Umfeld ermöglicht. Die Studienteilnehmenden können Videoanrufe mit den Pflegekräften durchführen und Bewegungsübungen digital abrufen. In einem Stepped Care-Ansatz wird, je nach Ausprägung der depressiven Symptomatik, eine achtwöchige Basis- oder eine zwölfwöchige Intensivversion des Programms angeboten. 

Großes deutschlandweites Konsortium setzt BRIDGE um 

Die Wirksamkeit der neuartigen Versorgungsform soll ab Anfang 2025 bei insgesamt 800 Teilnehmenden an 13 Kliniken in Rheinland-Pfalz, Hessen, Saarland und Bayern erprobt werden. Dazu gehören das Agaplesion Elisabethenstift, die Agaplesion Frankfurter Diakonie Kliniken, die Geriatrische Fachklinik Rheinhessen-Nahe, die Rheinhessen-Fachklinik Alzey, die Saarland-Heilstätten GmbH, die Universitätsmedizin Mainz sowie das Universitätsklinikum Würzburg. 

Es wird geprüft, wie die Teilnehmenden die neue Versorgungsform annehmen und wie die Leistungserbringenden den Nutzen des Programms einschätzen und die Zusammenarbeit bewerten. Die IKK Südwest und die Techniker Krankenkasse (TK) liefern Routinedaten aus ihrem Versichertenbestand für die gesundheitsökonomische Evaluation. Grundsätzlich können aber alle gesetzlich versicherten betroffenen Patientinnen und Patienten an der Studie teilnehmen. 

Um eine unabhängige Bewertung der Projektergebnisse zu gewährleisten, führt das IGES Institut in Berlin eine externe Evaluation durch. Die Datenerhebung erfolgt dabei am Institut für klinische Epidemiologie und Biometrie (IKE-B) der Universität Würzburg. Die Zentrale für klinische Studien des Universitätsklinikums Würzburg führt zudem ein Monitoring zur Sicherstellung der Datenqualität durch.

Die Deutsche Depressionsliga e. V. (DDL) wird als Vertretung der Patientinnen und Patienten alle Phasen des Projekts begleiten. Sie wird dabei von der Initiative Bündnisse gegen Depression Rheinland-Pfalz und dem Darmstädter Bündnis gegen Depression unterstützt. 
Weitere Kooperationspartner sind die Deutsche Gesellschaft für Verhaltenstherapie (DGVT), die Landespflegekammer Rheinland-Pfalz, die Katholische Hochschule Mainz, die Goethe-Universität Frankfurt am Main, die Medizinische Hochschule Brandenburg sowie das Ministerium für Wissenschaft und Gesundheit Rheinland-Pfalz.